A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut

نویسندگان

  • Zhenyu Zhang
  • Dongming Guo
  • Bo Wang
  • Renke Kang
  • Bi Zhang
چکیده

In this study, a novel approach of high speed scratching is carried out on silicon (Si) wafers at nanoscale depths of cut to investigate the fundamental mechanisms in wafering of solar cells. The scratching is conducted on a Si wafer of 150 mm diameter with an ultraprecision grinder at a speed of 8.4 to 15 m/s. Single-point diamonds of a tip radius of 174, 324, and 786 nm, respectively, are used in the study. The study finds that at the onset of chip formation, an amorphous layer is formed at the topmost of the residual scratch, followed by the pristine crystalline lattice beneath. This is different from the previous findings in low speed scratching and high speed grinding, in which there is an amorphous layer at the top and a damaged layer underneath. The final width and depth of the residual scratch at the onset of chip formation measured vary from 288 to 316 nm, and from 49 to 62 nm, respectively. High pressure phases are absent from the scratch at the onset of either chip or crack formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study

A comprehensive study of Schottky barrier MOSFET (SBMOSFET) scaling issue is performed to determine the role of wafer orientation and structural parameters on the performance of this device within Non-equilibrium Green's Function formalism. Quantum confinement increases the effective Schottky barrier height (SBH). (100) orientation provides lower effective Schottky barrier height in compa...

متن کامل

Nanoscratching-induced phase transformation of monocrystalline silicon –the depth-of-cut effect

This paper explores the effect of the depth-of-cut of an indenter on the phase transformations during nanoscratching on monocrystalline silicon on the Si(100) orientation. The analysis was carried out by molecular dynamics simulations. It was found that the depth-of-cut and the impingement direction of the indenter had a significant influence on the phase transformations in the initial impressi...

متن کامل

Highest-speed dicing of thin silicon wafers with nanosecond-pulse 355nm q-switched laser source using line-focus fluence optimization technique

Due to current and future anticipated widespread use of thin silicon wafers in the microelectronics industry, there is a large and growing interest in laser-based wafer dicing solutions. As the wafers become thinner, the laser advantage over saw dicing increases in terms of both the speed and yield of the process. Furthermore, managing the laser heat input during the dicing process becomes more...

متن کامل

Electrical and Optical Detection and Heating of the High Pressure MetallicPhase of Silicon In-situ During Scratching with Diamond and its effect on thematerial’s hardness

Scratching experiments were carried out on silicon wafers (100) with diamond styli of nominal 2, 5, and 10 μm radius. Relevant parameters varied and investigated were: load (10 to 100 mN) and depth of penetration, material hardness, electrical current effects and measured resistance, and speed effects. Direct electrical heating of the metallic high pressure phase of silicon during scratching ex...

متن کامل

Optimization of Chemical Texturing of Silicon Wafers Using Different Concentrations of Sodium Hydroxide in Etching Solution

In this paper, the morphology of chemically etched silicon with various concentration  is reported. The surface of Silicon (100) has pyramidal structures which can be used for anti-reflection applications in solar cells. Pyramidal structures can capture incident sun light therefore can enhance the efficiency of silicon solar cells. The structure of silicon pyramid was studied using scanni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015